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Experiments were designed to measure the free, transverse vibrations for square,
thin elastic plates with two types of edge support con"gurations. One con"guration
was fully clamped on three edges and free on the fourth edge (CCCF), and the other
was fully clamped on two adjacent edges and free on the other two edges (CCFF).
For these respective con"gurations, up to 18 frequencies and the corresponding
modal contours were measured using a scanning laser-doppler velocimeter,
acoustic excitation, and computer software. Measurements for the lowest "ve
non-dimensional frequency parameters j and their node lines compared favorably
to the corresponding theoretical results available in the open literature. Curve
veering may be the reason that several of the crisp modal contours at some higher
excitation frequencies for the CCFF con"guration were observed to be neither
symmetric nor antisymmetric about the plate's diagonal line of geometric symmetry.
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1. INTRODUCTION

One of the bases of comparison between experimental and theoretical results for
the free, transverse, harmonic vibrations of classical plates is the non-dimensional
frequency parameter j. This parameter, which appears as a coe$cient in the
non-dimensional form of this plate's governing fourth order di!erential equation
[1], is

j"ua2S
o
D

. (1)

Here, u is the plate frequency (rad per unit time), a is the dimension of the sides, o is
the mass density per unit of surface area, and D is #exural sti!ness given by

D"

Eh3

12(1!l2)
. (2)
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In the last equation, E is Young's modulus, h is the thickness dimension, and l is the
Poisson ratio for the plate.

An exhaustive summary of the open literature on both theoretical and
experimental measures of j for various plate geometries under a variety of
constraints was published by Leissa [1] in 1968 and articles of such measurements
continue to be published in Experimental Mechanics. Such measurements have
employed a variety of techniques, including electrodynamic plate excitation in
which resonance frequencies were identi"ed by distinct increases in noise levels [2];
node visualization using Moire}Salet}Ikeda methods [3]; and holographic
interferometry [4]. Unlike these classical experimental studies, the present study
employs state-of-the-art scanning laser doppler velocimeter, acoustic plate
excitation, and computer software to interpret the plate vibration data and display
the modal contours.

Shown in Figure 1 are the two plate con"gurations considered herein, for which
no previous experimental studies were found. Figure 1(a) de"nes the "rst
con"guration: a square plate clamped on three sides and free on the fourth,
designated CCCF. This con"guration was "rst studied theoretically by Elsbernd
and Leissa [5], who used the Ritz method with products of beam de#ections
Figure 1. A summary of the theoretical frequency parameters j and their corresponding nodal
(dashed) lines: (a) the CCCF square plate, and (b) the CCFF square plate. The sixth lowest theoretical
values are j"116)8 for the CCCF and j"65)83 for the CCFF con"guration [6]. The "rst four
measured values of j are also given, and their corresponding modal contours may be seen in Figures
3 and 4.
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functions, to compute theoretical values for the lowest "ve values for j and their
corresponding nodal patterns, both given in Figure 1(a). Figure 1(b) de"nes the
second con"guration: a square plate clamped on two adjacent sides and free on the
other two, designated CCFF. The theoretical results for the latter con"guration,
also based on the Ritz method using beam functions, were reported in references
[6}9], of which results in references [6] and [9] appear to be the most accurate.
Their "ve lowest theoretical values of j and their nodal patterns are given in Figure
1(b). For both the CCCF and the CCFF con"guration, Leissa [6] subsequently
reported the respective theoretical values of the sixth lowest frequency parameters,
which are listed in Figures 1(a) and 1(b) for comparison purposes; however, the
latter reference did not report the corresponding nodal lines for either
con"guration. Related studies include those of Groves and Clark [10], who
presented insights into the choice of trial functions for predicting j for higher,
antisymmetric modes. Further, Leissa [11] studied the phenomenon of curve
veering in plate vibrations, previously discussed by Classen and Thorne [12],
a theoretical prediction (based on approximations) that two di!erent modal shapes
with equal or nearly equal frequencies may exist for a plate with an aspect ratio at
or close to unity. This phenomenon is further discussed herein as it may explain
some of the unexpected and non-intuitive experimental results for the CCFF
con"guration that is, at several of the higher frequencies, crisp modal contours were
observed which were neither purely symmetric nor purely antisymmetric about the
plate's geometric line of symmetry.

The purposes of the present investigation were three-fold: (1) to validate
experimentally the published theoretical results (the "rst six j values and their
modal contours) for the two plate con"gurations of Figure 1; (2) to measure for
these two plate con"gurations the "rst 18 or so frequency parameters and their
respective modal contours; and (3) to determine the accuracy and practicality of the
experimental approach utilizing a laser}doppler velocimeter for measuring the
higher frequencies of plates. What follows is a brief description of the experimental
equipment and methods, a discussion of the experimental results, and conclusions
about the investigation.

2. EXPERIMENTAL METHOD

Overall views of the experimental system are shown in Figures 2(a) and 2(b). The
design of the plates' mechanical boundary constraint system for the CCCF
con"guration is shown in Figure 2(a), in which, for the CCFF con"guration, the
steel &&picture'' frame on the right side that bolts the experimental plate to the
welded steel I-beam frame, is omitted. The major components of the experimental
system are shown in Figure 2(b). Here, the speaker used for acoustic excitation of
the plate (in the vertical plane) was placed at about a 453 angle to the plate face to
avoid acoustic coupling of the speaker to the air column between the speaker and
the plate.

The material and geometric characteristics of the four aluminium plates used in
these experiments are given in Table 1. A pair of plate geometries was designed for



Figure 2. The experimental system: (a) plate frame design illustrating the CCCF con"guration, and
(b) plan view of the overall setup.
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each of the two constraint con"gurations so that the whole range of plate free
vibration frequencies, from the lowest to about the 20th, was spanned for each pair.
Thus, both the frequency range (50}800 Hz) and energy output limitations of the
speaker used for acoustic plate excitation were observed.

Initially, the resonance frequencies f (Hz) of the plate were determined by
measuring frequency response functions between a broadband acoustic excitation
and several point velocity outputs. The plate was then excited acoustically at each
of these premeasured resonance frequencies using the lock-in ampli"er and speaker
system. By phase-referencing the measured velocity to that of the drive signal, the
corresponding mode shape was resolved. The discrete velocity measurements
required to measure the mode shapes were obtained using a Ometron VPI 4000
Scanning Laser}Doppler Velocimeter. This laser system is a non-contacting
velocity transducer that measures the Doppler frequency shift at each point on
a dense grid covering the surface of the plate and converts it to velocity. The



TABLE 1

Material and geometric characteristics of the four experimental plates. ¹he frequency
multiplier C (Hz~1) is based on these characteristics, and is computed from

equation (4)

Aluminum, type 3003; E"68)9 GPa; l"0)3; o/h"2)7]103 kg/m3
Plate Plate Length, width Thickness Frequency multiplier
no. constraint a (mm) h (mm) C (Hz~1)

1 CCCF 457 2)24 0)383
2 CCCF 457 4)85 0)180
3 CCFF 457 2)24 0)383
4 CCFF 305 3)10 0)123
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software accompanying this laser system allows for the measurement of the velocity
pro"le of a plate vibrating at a resonance frequency f.

The relationship between the measured value of f and the non-dimensional
frequency parameter j is derived as follows. For u of equation (1) in the units of
rad/s, u"2nf. When u and D of equation (2) are substituted into equation (1), the
result is

j"Cf (3)

in which the frequency multiplier, based only on the plate's material and geometry,
is given by

C"2na2S
12(1!l2)o

Eh3
. (4)

Numerical values of C for the four experimental plates are given in Table 1. The
reported values for j in the next section are based on these values of C and the
measured values of f.

3. EXPERIMENTAL RESULTS AND DISCUSSION

The measured values of j and their corresponding modal plots (mode shapes) are
given in Figure 3 for the CCCF con"guration and in Figures 4 and 5 for the CCFF
con"guration. In these "gures, the orientations of the plates, their boundaries, and
their (x, y) co-ordinate system are those of Figures 1(a) and 1(b). In these
experiments, the value of f was measured to three signi"cant "gures, the same
accuracy as that reported for j. For the contour plots of Figures 3}5, the peak
root-mean-square (r.m.s) amplitudes of transverse plate velocity were typically in
the range of 5}15 mm/s for the lightest (white) areas, 1}4 mm/s for the medium gray
areas and zero, or nearly so, for the black-most areas which correspond to the
nodal &&lines'' and the clamped edges. For plots with more than one white area,
a given white area was measured to be always 1803 out of phase with its nearest
neighbors. Since the plate motion is harmonic, the r.m.s. amplitude of plate



Figure 3. The CCCF plate: measured values for the frequency parameters and their corresponding
modal contours, which are either symmetrical or antisymmetrical about the plate's centerline, x"a/2.

Figure 4. The CCFF plate: measured values for the frequency parameters and their corresponding
modal contours, which are either symmetrical and antisymmetrical about the plate's diagonal line, Q.
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Figure 5. The CCFF plate: measured values for the frequency parameters and their corresponding
modal contours, which lack symmetry about the plate's diagonal line, Q.
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de#ection contour plots are exactly analogous to the velocity contour plots shown.
Also generated but not shown herein were the color-coded contour plot
counterparts of each plot shown in Figures 3}5.

Consider the experimental results for the CCCF con"guration summarized in
Figure 3. Let each numerical entry for the frequency parameter have the
designation j"j

ij
in which i is its row and j is its column position. For i"1 and 3,

the mode shapes (white areas) are symmetrical about the line of the plate's
geometric symmetry, x"a/2 and for i"2 and 4, the mode shapes are
antisymmetrical about x"a/2. The comparisons of the "rst "ve measured nodal
patterns (mean straight lines along the black areas between the white areas) with
the corresponding broken node lines of Figure 1(a) used in the theoretical
calculations, are excellent, as are the "rst, second, and "fth theoretical frequency
parameters j, which are higher than the respective measured ones, as one would
expect since the Ritz method predicts an upper bound value. Why the predicted
values for j

21
"63)44 and j

13
"76)14 are both somewhat lower than

their respective measured values of 67)1 and 77)5 is not clear; but since crisp
modal contour plots for these latter two cases were more di$cult to obtain
experimentally than most of the other ones of Figure 3, these discrepancies may be
due more to experimental inaccuracies (discussed later) than to theory. Further, the
sixth lowest value was predicted by Leissa [6] as j"116)8. This upper-bound
value compares well to the measured value of j

23
"114, for which the measured

modal contours were antisymmetrical with respect to the plate's line of symmetry,
x"a/2.

Consider the experimental results for the CCFF con"guration summarized in
Figure 4. Listed are the frequency parameters and their modal contour plots: 11
symmetrical and 3 antisymmetrical about the diagonal line Q, the line of geometric
symmetry for the plate. The comparisons of the "rst, third, fourth, and "fth
theoretical values of j listed in Figure 1(b), as well as their corresponding nodal
lines, with the respective "rst through fourth measured values of Figure 4, are
excellent. The sixth lowest value predicted by Leissa [6] was j"65)83, which
corresponds to the measured value of j"64)2, the "fth from the lowest and the
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fourth symmetrical modal contour plot shown in Figure 4. Consistent with the Ritz
method used in the theoretical calculations, all "ve theoretical values for j are close
to but somewhat greater than their measured counterparts.

Repeated e!orts to measure the second theoretical value of j"24)80, together
with its antisymmetrical modal contours, were unsuccessful. This lack of success
was probably due to the unavoidable manufacturing imperfections or eccentricities
in the experimental plates such as slight out-of-squareness and imperfect edge
constraints and also to some non-uniformity in the acoustic excitation set forth by
the speaker. At this lowest unmeasured antisymmetrical mode, such factors
probably prevented the formation of a stationary diagonal line Q, especially at and
near the intersection of the two free edges, the most #exible portion of the plate. In
fact, in practice this "rst antisymmetrical mode may be physically impossible to
observe without restraining the corner at the intersection of the two free edges
(which was not done). However, system imperfections did not prevent the
measurements for higher antisymmetrical modes, those corresponding to j"58)4,
183, and 196.

Further experimental results for the CCFF con"guration are the seven modal
contour plots displayed in Figure 5. The plot for j"64)2 of Figure 4 is repeated in
Figure 5 for comparison purposes. The "rst observation is that the latter somewhat
blurred plot appears to be nearly symmetric about the diagonal, with its two and
a quarter &&circles'' along Q. Actually, this contour plot may not correspond to
a &&pure'' resonance condition, but may be one in transition to the crisp plot for
j"68)9 in Figure 4. The second observation comes about by grouping the "rst six
values of j in Figure 5 in consecutive pairs: (59)4, 64)2), (142, 144), and (217, 222),
now de"ned as close pairing. (The second of the pair for j"263 could not be
measured because its corresponding frequency exceeded the capacity of the
apparatus.) Note that the modal contour plot for any member of a close pair is
approximately the mirror image across the diagonal Q of that for the other member
of pair.

The non-intuitive, non-symmetrical contours of Figure 5 may be the
consequence of the &&aberration phenomenon' or &&curve veering'' observed in
theoretical studies [11] and [12] for (nearly) square membranes and plates, in
which the approximate Ritz method and approximate beam mode shapes were
superimposed to achieve the free vibration solutions. We paraphrase Leissa's
observations on curve veering, which he attributes to the use of these approximate
methods [11]: ¹heoretical results for the aspect ratio R of a plate or membrane, when
plotted against frequency, show that each curve for a given mode shape is well behaved,
except when two such curves approach a crossing at R"1. Instead of crossing at
R"1, these two curves veer away from each other, with the result that one mode
shape is (gradually) changed to the other. We speculate that such modal degeneracy
(equal frequencies) may be the largest factor leading to the observed non-symmetric
modes of Figure 5. The experimental plate is, after all, an approximation to an ideal
square; the excitation frequency is an approximation to an ideal constant value and
the clamped edge constraints may change ever so slightly during forced excitation,
which may change the plate's aspect ratio ever so slightly during the experiment.
Thus, it is not too surprising that what appears to be curve veering in approximate
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theory may also be curve veering in these approximate experiments. That is, for
a nearly constant excitation frequency, the electronics take a time average of the
two detected modal forms, which may veer in time from diagonally symmetric to
diagonally antisymmetric, or vice versa, to produce each non-symmetric form of
Figure 5. The fact that a non-symmetric form has a minor image for paired
frequencies may support the experimental existence of curve veering and the
frequency between each paired frequency may be the experimental &&transition
zone'' observed in approximate theory [12]. However, such issues need further
theoretical and experimental investigation and are well beyond the scope of the
present study.

4. SUMMARY AND CONCLUSIONS

Some items of practical interest to an experimentalist are summarized. First, even
with a carefully designed experimental plate system in which geometric and other
eccentricities are minimized, one may encounter curious results such as those
observed for the CCFF con"guration: a few modal contours corresponding to
resonances that were neither symmetrical nor antisymmetrical about the diagonal
line of plate symmetry. The latter results may be degenerate modes (equal
frequencies) with curve veering. Second, for the available frequency range of
50}800 Hz for the present state-of-the-art system, several square plates of the same
face dimensions but of di!erent thicknesses are needed to accurately measure to
three signi"cant "gures the lowest 15}20 free vibration frequency parameters j and
their corresponding modal contours. With the equipment in place, such a study for
a given plate con"guration may be accomplished by an experienced experimentalist
in about a day's time.

These experimental results suggest two topics that warrant further investigation.
First, experimental and theoretical studies may be done on the contour patterns
that are formed in the approach, at increasing excitation frequency, to a resonance
state: a crisp modal contour corresponding to a free vibration frequency. For
instance, by carefully observing in Figure 4 the consecutive modal contours from
j"64)2}87)4, one may imagine the progressive formation of modal patterns as the
white areas split, coalesce, expand, and migrate over the plane. Second, curve
veering could be investigated using several di!erent plates with aspects ratios near
unity.

Thus, these experimental investigations show both the hazards and advantages
of employing a scanning laser}doppler velocimeter, acoustic excitation,
and computer software to measure and visualize the free transverse
vibration characteristics of elastic plates. For the CCCF and the CCFF plate
con"gurations used in these studies, the experimental results for the "rst "ve modal
contours agreed with those reported in the open literature and the corresponding
frequency parameters, experimental and theoretical, agreed to within a few percent.
These results serve to validate the e!ectiveness, accuracy, and reliability of
the present measuring system and thus give credibility to the higher frequency
parameters for the CCCF and for the CCFF con"gurations measured in this
study.
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